FlowCap: 2D Human Pose from Optical Flow

نویسندگان

  • Javier Romero
  • Matthew Loper
  • Michael J. Black
چکیده

We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft Kinect. Unlike range data, however, when people stop moving, there is no optical flow and they effectively disappear. To address this, our FlowCap method uses a Kalman filter to propagate body part positions and velocities over time and a regression method to predict 2D body pose from part centers. No range sensor is required and FlowCap estimates 2D human pose from monocular video sources containing human motion. Such sources include hand-held phone cameras and archival television video. We demonstrate 2D body pose estimation in a range of scenarios and show that the method works with real-time optical flow. The results suggest that optical flow shares invariances with range data that, when complemented with tracking, make it valuable for pose estimation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual - Inertial Tracking Using Optical Flow Measurements

Visual-inertial tracking is a well known technique to track a combination of a camera and an inertial measurement unit (IMU). An issue with the straightforward approach is the need of known 3D points. To by-pass this, 2D information can be used without recovering depth to estimate the position and orientation (pose) of the camera. This Master’s thesis investigates the feasibility of using Optic...

متن کامل

Puppet Flow

We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent...

متن کامل

Automatic Detection and Tracking of Human Motion with a View-Based Representation

This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledg...

متن کامل

Generated Motion Maps

The paper presents a concept for generated motion maps to directly generate a human-specific modality such as human pose and stacked optical flow, with only one rgb-image. Although the conventional approaches have achieved a complicated estimation with a discriminative model, we find the solution with a recent generative model. The two primary contributions in this paper are as follows: (i) pro...

متن کامل

Model-Based Head Tracking and 3D Pose Estimation

This paper presents a generic method for addressing the issue of 3D model-based head pose estimation. The method proposed relies on the downhill simplex optimization method and on the combination of motion and texture features. A proper initialization based on a block matching procedure associated with 3D/2D matching depending on texture and optical flow information leads to an accurate recover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015